409 research outputs found

    Affective Man-Machine Interface: Unveiling human emotions through biosignals

    Get PDF
    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various psychological and physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve as an advanced man-machine interface (MMI) for empathic consumer products. However, such a MMI requires the correct classification of biosignals to emotion classes. This chapter starts with an introduction on biosignals for emotion detection. Next, a state-of-the-art review is presented on automatic emotion classification. Moreover, guidelines are presented for affective MMI. Subsequently, a research is presented that explores the use of EDA and three facial EMG signals to determine neutral, positive, negative, and mixed emotions, using recordings of 21 people. A range of techniques is tested, which resulted in a generic framework for automated emotion classification with up to 61.31% correct classification of the four emotion classes, without the need of personal profiles. Among various other directives for future research, the results emphasize the need for parallel processing of multiple biosignals

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?

    Full text link
    There is considerable evidence for some form of charge ordering on the hole-doped stripes in the cuprates, mainly associated with the low-temperature tetragonal phase, but with some evidence for either charge density waves or a flux phase, which is a form of dynamic charge-density wave. These three states form a pseudospin triplet, demonstrating a close connection with the E X e dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller effect as a form of flux phase. A simple model of the Cu-O bond stretching phonons allows an estimate of electron-phonon coupling for these modes, explaining why the half breathing mode softens so much more than the full oxygen breathing mode. The anomalous properties of O2O^{2-} provide a coupling (correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon modes, 16 eps figures, revte

    Stop looking angry and smile, please: start and stop of the very same facial expression differentially activate threat- and reward-related brain networks

    Get PDF
    Static pictures of emotional facial expressions have been found to activate brain structures involved in the processing of emotional stimuli. However, in everyday live, emotional expressions are changing rapidly, and the processing of the onset vs the offset of the very same emotional expression might rely on different brain networks, presumably leading to different behavioral and physiological reactions (e.g. approach or avoidance). Using functional magnetic resonance imaging, this was examined by presenting video clips depicting onsets and offsets of happy and angry facial expressions. Subjective valence and threat ratings clearly depended on the direction of change. Blood oxygen level dependent responses indicate both reward- and threat-related activations for the offset of angry expressions. Comparing onsets and offsets, angry offsets were associated with stronger ventral striatum activation than angry onsets. Additionally, the offset of happy and the onset of angry expressions showed strong common activity in the lateral orbitofrontal cortex bilaterally, the left amygdala and the left insula, whereas the onset of happy and the offset of angry expressions induced significant activation in the left dorsal striatum. In sum, the results confirm different activity in motivation-related brain areas in response to the onset and offset of the same emotional expression and highlight the importance of temporal characteristics of facial expressions for social communication

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    The Effect of Convection on Disorder in Primary Cellular and Dendritic Arrays

    Get PDF
    Directional solidification studies have been carried out to characterize the spatial disorder in the arrays of cells and dendrites. Different factors that cause array disorder are investigated experimentally and analyzed numerically. In addition to the disorder resulting from the fundamental selection of a range of primary spacings under given experimental conditions, a significant variation in primary spacings is shown to occur in bulk samples due to convection effects, especially at low growth velocities. The effect of convection on array disorder is examined through directional solidification studies in two different alloy systems, Pb-Sn and Al-Cu. A detailed analysis of the spacing distribution is carried out, which shows that the disorder in the spacing distribution is greater in the Al-Cu system than in Pb-Sn system. Numerical models are developed which show that fluid motion can occur in both these systems due to the negative axial density gradient or due the radial temperature gradient which is always present in Bridgman growth. The modes of convection have been found to be significantly different in these systems, due to the solute being heavier than the solvent in the Al-Cu system and lighter than it in the Pb-Sn system. The results of the model have been shown to explain experimental observations of higher disorder and greater solute segregation in a weakly convective Al-Cu system than those in a highly convective Pb-Sn system

    Short-term temporal variation in PM2.5 mass and chemical composition during the Atlanta Supersite Expriment, 1999

    Get PDF
    Measurements in urban Atlanta of transient aerosol events in which PM2.5 mass concentrations rapidly rise and fall over a period of 3-6 hr are reported. The data are based on new measurement techniques demonstrated at the U.S. Environmental Protection Agency (EPA) Atlanta Supersite Experiment in August 1999. These independent instruments for aerosol chemical speciation of NO3-, SO4(2-), NH4+, and organic and elemental carbon (OC and EC), reconstructed the observed hourly dry PM2.5 mass to within 20% or better. Data from the experiment indicated that transient PM2.5 events were ubiquitous in Atlanta and were typically characterized by a sudden increase of EC (soot) and OC in the early morning or SO4(2-) in the late afternoon. The frequent temporal decoupling of these events provides insights into their origins, suggesting mobile sources in metro Atlanta as the main contributor to early morning PM2.5 and more regionally located point SO2 sources for afternoon PM2.5 events. The transient events may also have health implications. New data suggest that short-term PM2.5 exposures may lead to adverse health effects. Standard integrated filter-based techniques used in PM2.5 compliance monitoring networks and in most past PM2.5 epidemiologic studies collect samples over 24-hr periods and thus are unable to capture these transient events. Moreover, health-effects studies that focus on daily PM2.5 mass alone cannot evaluate the health implications of the unique and variable chemical properties of these episodes

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: A pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk ofmajor cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regressionmodels to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0×10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genom
    corecore